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Abstract

In computer graphics, procedural methods and L-
systems are common approaches to model complex
botanical trees. In contrast to previous tree mod-
eling systems, we propose linking rules, parame-
ters and geometry to semantic entities. This has the
avantage that when an entity is clicked in the view-
port, its parameters can be displayed immediately,
and viewport editing operations can be reflected in
the parameter set. Furthermore, we store the entities
in a hierarchical data structure and allow the user to
activate recursive traversal via selection options for
all editing operations. Therefore, viewport or pa-
rameter changes can be applied to a single entity or
many entities at once, and only the geometry for the
affected entities needs to be updated. The proposed
user interface aims at simplifying the modeling pro-
cess.

1 Introduction

Modeling trees has been a topic for decades in
computer graphics, with applications in areas
such as films, computer games, advertising and
architecture visualization, because outdoor scenes
usually include trees. Current tree modeling tools
are often powerful, but difficult to handle, or
they are easy to use, but unable to capture the
uniqueness of particular trees. Research in this area
has reached a point where we can focus on making
the modeling process easy for users without a
background in computer graphics. For that reason,
we aim to balance very powerful, but difficult-to-
use systems with simpler, less powerful approaches.

Procedural systems for modeling trees use a
principle for which Alvy Ray Smith coined the
term data amplification paradigm [29]: It describes
how complex models can be constructed from
a small set of rules and some input parameters.

Unfortunately, previous tree modeling systems
create the geometry as an unstructured list of
polygons, without associating rules with their
geometry instances.

Linking the geometry closely with the parame-
ters used for geometry construction is a strength
of conventional modeling systems like 3DS Max,
Maya, or Cinema4D, because local changes can be
made without affecting the whole model or entail-
ing a complete reconstruction. However, due to the
sheer number of primitives, exclusively modeling a
complex tree in this manner is impractical.

In the sketch-based modeling approach, the user
creates a rough sketch of an object, and algorithms
infer a 3D model from this input. This shifts the
responsibility for managing the primitives to the
computer, but altering the model requires a new
sketch or different tools.

By integrating the procedural, conventional mod-
eling and sketch-based approaches into a single
system, we combine their strengths and eliminate
their weaknesses: We use a procedural model to
create instances, but we link the parameters with
their geometry instances to form semantic entities
in a hierarchical data structure. This permits us to
change single instances or to perform mass updates
after geometry creation without reconstructing
the entire model. Sketch-based modeling yields
additional methods for input, and the user can
model on a semantic level after sketching. We call
this semantic modeling because we are dealing with
entities rather than abstract rules or raw geometry.

We use a single hierarchical data structure to
store both the geometry and parameters for all
branches of a tree. This paper’s main contributions
are exposing the hierarchy traversals during updates
as selection options and retrieving branch parame-
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ters from interactive changes in the viewport. This
paper proposes a user interface and algorithms to
ease modeling trees, but it does not aim at creating
more realistic models.

2 Related Work

2.1 Procedural modeling of trees

Aristid Lindenmayer [12] introduced a notation for
modeling growth processes in 1968. Named after
their inventor, L-systems apply rewriting rules to
an axiom to produce a linear symbolic description
of a plant, the L-string. An L-system requires that
all matches for a rule are applied in parallel, and an
input parameter states the number of parallel rewrit-
ing steps to perform before the system terminates.
The next stage in the algorithm produces geometry
from the L-string. Lindenmayer and Prusinkiewicz
describe this process with several extensions in
their book [21]. Prunsinkiewicz et al published
a series of extensions: interaction with the envi-
ronment [15], an application to topiary [22], and
the use of positional information [23]. Positional
information is taken from a 2D function editor
to change parameter values along the parent branch.

Honda describes a procedural approach that
created the first 3D plant skeletons [9, 2]. Reeves
invented particle systems, and describes an applica-
tion to trees together with Blau [26]. Oppenheimer
proposed a recursive algorithm inspired by Man-
delbrot’s fractals [19]. He needs few parameters
to describe trees because he uses recursion factors.
Bloomenthal demonstrated how to produce realistic
branches [3]. de Reffye et al animate tree growth
using procedural models [5]. Greene showed how
to use voxel grids to speed up queries that prevent
self-intersection and allow to simulate heliotropism
[7]. Holton proposed the strand model to calculate
realistic branching angles, radii and branch lengths
[8].

Weber and Penn propose a parameterization for
trees designed for use by non-experts [31]. In par-
ticular, they replace the recursion factors used by
Oppenheimer with 13 parameters that apply to all
branches on the same level of recursion. Therefore,
parameter changes always affect all branches on the
same level. There are special parameters with a ’V’

suffix which define a maximum random deviation
from the base parameter. The paper provides many
examples demonstrating that the parameters suffice
for modeling a wide range of trees.

Lintermann and Deussen designed a graphical
programming language to describe trees, flowers
and other plants [13]. Parameters can be varied by
assigning mathematical functions which evaluate
iteration counts or use pseudo random number
generators.

Power et al apply an inverse kinematics opti-
mization technique to create a natural branch form
while a user drags a branch, and branches can be
bent, rotated or pruned in the viewport [20].

Since Weber and Penn published their system,
computers have evolved to a point where it is pos-
sible to store parameters for individual branches, as
demonstrated by Boudon et al [4] for L-systems.
Their system collects parameters in a hierarchical
data structure called decomposition graph. The
parameters can be inherited to child branches,
similar to the inheritance mechanism used in
object-oriented programming languages. The
user may edit the silhouette of a branch including
sub-levels, and an L-system fills it with the next
level of branches and leaves.

2.2 Image-based modeling of trees

More recently, research has focused on reproducing
existing plants from images [25, 27, 28]. Quan
et al’s system allows the user to draw and move
curves, to edit the radius of a branch, or to place
leaves in the 3D viewport [24]. The system by
Neubert et al [16] requires only few input images
and permits sketching. The user provides only
approximate positions for the images, and no
registration is needed.

2.3 Sketch-based modeling of trees

Sketch interfaces allow a user to create a 2D sketch
from which the computer derives a 3D model. This
has been demonstrated for trees, flowers [11] and
phyllotactic arrangement of plant organs [1]. Okabe
et al presented a system that deduces a 3D model of
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Figure 1: Modeling a plane tree in 1-2-tree. a) The trunk and the main branches are modeled individually.
b+c+d) Further branches are added using mass updates. e) Result after adding leaves.

a tree from a sketch, by assuming that trees spread
branches so that the distances between the branches
are maximized [18]. The system integrates three
example-based interaction techniques that can be
used to alter the model after the geometry has been
created. The Sketch L-system by Ijiri et al allows
the user to edit production rules in the 3D viewport
[10]. The system applies the production rules inter-
actively while the user sketches the trunk.

3 Overview

Our system treats tree organs such as the trunk,
branches, twigs, roots, leaves, blossoms and fruits
as semantic entities. The entities have simple
parameters such as their size and color. Further
parameters control placement and orientation of the
tree organs. In this paper, we focus on the branches
and leaves as the most important entities that define
the tree structure and visual appearance, but future
implementations could include other entities. As
in other publications, the term “branches” includes
the trunk, any twigs, and even roots.

The entities are stored in a simplified scene
graph [30], where all nodes represent branches. Al-
gorithms that alter parameters or update geometry
have recursive scene graph traversal as a built-in
feature. We expose the recursive data structure
updates to the user as selection options. Thus,
the user may choose to apply parameter changes
to a single branch or several branches at once. A
notation for positional information ensures variety.

Every entity has two representations: one is its
parameterization, the other is its geometry. We
store both representations in the scene graph node.
This has a number of benefits: When the user se-

lects an entity in the viewport, our system displays
its parameters. When the user edits the geometry
in the viewport, our system adjusts the entities’
parameters. Any changes to the parameters or
the geometry are interactively applied to the other
representation and optionally to other instances.
Only the geometry for the affected nodes needs to
be rebuilt.

The new system is designed to allow for fast and
easy creation of trees, thus its name 1-2-tree (“easy
as counting one-two-t(h)ree”).

4 Using 1-2-tree

We propose the following user interface: When
the user starts the system, the trunk for a new
tree is displayed. Branches are added by setting
the number of child branches to nonzero or by
sketching them in the viewport. All branches can
be edited directly in the viewport or by adjusting
their parameters. For capturing the uniqueness of
specific trees, it often makes sense to model the
trunk and some of the main branches individually,
but as modeling a tree progresses, minor branches
and twigs are usually best edited using mass
updates. Leaves are usually added as a last step, as
they hide the tree’s inner structure. See Figure 1 for
an example.



4.1 Selection

The user may select branches in the viewport. In or-
der to perform mass updates, further branches can
be added to the selection using the following selec-
tion modes:
• Same Level: Selects all branches on the same

branch level,
• Recursive: Adds the selected branches’ chil-

dren to the selection.
If both options are active, changes affect all

branches on the same level and below the currently
selected branch. If the trunk is selected and recur-
sive selection is active, editing operations affect the
entire tree.

There may be several kinds of child branches on
a branch. For the trunk, there may be a few main
branches, many small branches near its top, and
the roots can be modeled as branches, too. The
user may define groups of branches by assigning
tags, and may limit updates to branches that carry
the selected branch’s tag. With properly assigned
tags, it is therefore possible to edit only the main
branches, for example.

Since all editing operations are applied to all
selected branches, the selection modes permit the
user to perform powerful editing operations in an
intuitive manner.

4.2 Viewport tools

The branches are defined by control points and
radii, which are stored in the scene graph node.
The following tools may be used to manipulate the
control points in the viewport:

The “Move” tool allows moving branch control
points. All following control points on the same
branch, its child branches and all branches in
the selection are translated by the same vector.
Another viewport tool interactively rotates the
currently selected branches against their parents in
the viewport. The parameters “Length” and “Angle
against Parent” are updated for the entire selection.

The “Sketch” tool allows for sketching branches
directly in the viewport. The user moves the mouse
over the parent branch to select a starting point and

then sketches the new branch. After sketching, the
new branch lies in a plane, but the user can move
the control points from a different perspective.

The currently selected branch can be deleted by
pressing the DEL key. The user may delete the
trunk in this manner and sketch a new one. The
“Saw” tool can be used to cut off branch parts at the
mouse position. It was implemented as a replace-
ment for pruning.

4.3 Parameters

While sketching and moving control points works
well for editing individual branches, editing many
branches at a time can often be accomplished more
easily by manipulating parameters. Our parameters
are very similar to those of Weber and Penn [31],
except that we store individual parameters for
each branch. In order to increase variety during
mass updates, we created a simple notation that
allows the user to combine parameter increases
or decreases along the parent branch with a noise
function. This is a simplified form of positional
information [23]. Please refer to Appendix A for
details on the notation and the parameter list.

For many trees, smaller branches and leaves are
concentrated near the hull of the tree. We model
this observation by introducing the “anchor values”
parameter: Every branch’s anchor value selects the
control points to use for placing the branch. The
starting point ~q for a child branch with anchor value
a and n parent branch control points p0, ..., pn−1 is
computed by interpolation

~q =

{
~pk + (j − k)(~pk+1 − ~pk) if 0 < a < 1
~p0 if a ≤ 0
~pn−1 if a ≥ 1

where j = a(n− 1) and k = bjc. The user may
restrict branches and leaves to the outer areas of a
tree by specifying an interval for the anchor values.
For example, assigning “0.5-1” as an anchor value
will place branches only on the outer half of a
branch.
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Figure 2: Processes affecting the tree’s central data structure: scene graph node type Branch

5 Algorithms

Figure 2 summarizes how moving control points,
sketching, changing parameters, and rendering af-
fect scene graph nodes for branches. For any view-
port changes, the geometry is updated, and new
parameters for all currently selected branches are
deduced. While the user is sketching, 1-2-tree re-
calculates the parameters and vertices interactively.
When the user changes a parameter, the geometry
and parameters are updated recursively. Render-
ing requires a recursive traversal of all scene graph
nodes.

5.1 Selection in the viewport

Clicking small branches that occupy only few pix-
els in the viewport may be difficult for the user, be-
cause the mouse driver does not notify the system of
every pixel the cursor runs through. Moreover, the
user may not want to zoom onto a single branch,
because he wants to view changes to a number of
branches. In these cases, it is easier for the user
to move the cursor to cross the branch instead of
clicking it. This requires building a polygon from
the last and current mouse positions and intersect-
ing that polygon with the geometry.

5.2 Viewport tools

Whenever any branch’s control points are moved,
its child branches and the following control points
on the same branch must be moved as well. If the
branch’s first control point is moved, its anchor
value is recalculated. The child branches’ anchor

values aj allow to decide quickly which branches
need to be moved when control point pi is moved.
These are the branches bj with anchor value aj

where ajn > i − 1 for a branch with n child
branches. All selected branches’ control points are
moved by an equal distance, and their “Length”
parameter is recalculated.

For sketching, the start point for the new branch
is selected with the same algorithm as for viewport
selection. After that, all mouse positions are stored
in an array and branch control points are selected
equally spaced from the array in every frame.
This allows to render the new branch interactively
during sketching.

5.3 Geometry Creation and Rendering

We use the 4-point scheme [6] to produce smooth
branch curves from the control points. It guarantees
that the branch curve contains the control points.
Then we compute generalized cylinders for the
branches from the vertices and radii. The polygons
are stored directly in the scene graph node.

Leaf polygons are managed and stored in their
parent branch. Leaf texels are interpreted as fully
transparent or completely opaque. This allows us
to use alpha-testing rather than the more expensive
depth sorting for rendering the leaves.



Hazel Oak tree Poplar Silver Linden

Figure 3: Example trees

Species Modeling time #Branches #Leaves #Branch levels Geometry Parameters
Hazel 4 min 58 s 2,221 17,939 4 21.9 MB 1.1 MB
Oak 5 min 03 s 9,931 57,228 4 22.3 MB 4.7 MB
Silver Linden 7 min 33 s 2,211 7,048 4 21.7 MB 1.1 MB
Poplar 3 min 29 s 6,631 27,483 4 32.4 MB 3.1 MB
Ash Tree 4 min 37 s 221 680 4 689.0 kB 106.5 kB
Beech Tree 5 min 57 s 7,517 187,000 5 23.8 MB 3.5 MB
Ahorn ca 25min 34,001 393,822 5 75.5 MB 15.7 MB
Birch Tree 8 min 37 s 23,011 99,190 5 114.0 MB 10.9 MB
Plane Tree ca. 9min 14,373 204,138 5 18.8 MB 7.0 MB

Table 1: Statistics for creating the trees in Figures 1, 3, 4

5.4 Persistence

In procedural modeling, the persistence problem
refers to the difficulty of retaining user edits after
parts of the model were changed [4, 14]. The naive
approach to change the number of branches on a
parent branch uses one of the old branches as a tem-
plate for creating the new branches. However, if one
of the deleted branches was edited with individual
parameters, these parameters are lost. Therefore,
instead of deleting branches, the existing branches
should be moved to their positions, and then their
positional information should be re-evaluated. As-
signing tags further reduces the impact of changing
the number of branches.

6 Results

1-2-tree recreates geometry only for scene graph
nodes that were changed, and these changes are
applied fast enough that parallel execution is not
needed. Table 1 lists memory usage and time
needed to model the trees shown in this paper.
The amount of memory needed to store the ge-
ometry usually exceeds the memory needed for
the parameters by a factor of at least 2. Given
today’s memory sizes, we think the added cost of
individual parameters for each branch is affordable
for editing single trees.
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Figure 4: More examples. For the ash tree, the final level of branches was modeled as a texture.

Each branch takes 440 bytes of fixed storage and
has a number of external string buffers used to store
positional information. While memory use for pa-
rameters varies only slightly, memory cost for ge-
ometry depends on the level of detail generated. We
chose a level of detail appropriate for display.

6.1 Discussion

We compare 1-2-tree to other tree modeling
systems. L-systems are a long success story in
modeling plants, but we preferred to operate
directly on a scene graph for a number of reasons.
First, the works of Weber and Penn, Lintermann
and Deussen demonstrate that most trees do
not require the flexibility offered by L-strings.
Secondly, 1-2-tree’s editing functions build on
hierarchy traversal, which can be implemented
more efficiently on hierarchical data structures than
on an L-string. Thirdly, while any alteration re-
quires completely parsing and copying the L-string,
updates are very efficient with a hierarchical data
structure because only the geometry of the affected
scene graph nodes needs to be updated.

While Weber and Penn’s system stores parame-
ters for every branch level, 1-2-tree stores similar
parameters for every single branch, and 1-2-tree
can be configured to apply changes to all branches

on a single level. We frequently use this selection
mode. Whereas Weber and Penn’s system allows
varying parameters only randomly, our notation
for positional information allows mixing random
influences with parameter increases or decreases
along the branch. Therefore, 1-2-tree is a superset
of Weber and Penn’s system.

Lintermann and Deussen’s visual system,
called Xfrog, provides node types with numerous
parameters. The variety of plants that can be
modeled with Xfrog may be comparable to the
power of L-systems. Xfrog stores the rule system
describing a plant in the so-called p-graph. Xfrog’s
algorithm for geometry creation takes the p-graph
and a separate exception list as input to create the
model’s geometry. These three data structures are
integrated into a single data structure in 1-2-tree,
which reduces computation time and algorithmic
complexity. While Xfrog and L-systems are more
versatile systems for modeling plants, 1-2-tree
specializes in modeling trees rapidly and individu-
ally. In contrast to Xfrog, users of 1-2-tree do not
require knowledge about loops and mathematical
formulae. 1-2-tree’s selection modes and viewport
editing allow for more intuitive modeling, because
1-2-tree relieves the user of finding the p-graph
node that produces a certain effect.



Like 1-2-tree, Boudon et al’s system stores
individual parameters for each branch. In 1-2-tree,
copying changes to other nodes is governed by
intuitive selection settings rather than inheritance
settings. 1-2-tree integrates the functionality
of Boudon et al’s decomposition graph and the
branching structure browser into the 3D viewport
to further ease modeling.

The system by Okabe et al [17] is orthogonal
to ours. It focuses on sketch- and example-based
modelling, whereas 1-2-tree focuses on procedural
modeling and direct editing methods. Both ap-
proaches have their advantages, and future users
might want to have a system that integrates the
strengths of both systems.

Boudon et al report an average modeling time
of 3 hours for each model [4], and Okabe et al’s
models took less than 10 minutes on average [17].
In 1-2-tree most models take between 4 and 10
minutes to create.

7 Conclusion

We tried to balance the various approaches and use
sketching where it is strongest, which is modeling
individual branches. We feel that deriving parame-
ters from viewport input and applying the derived
parameters to other instances nicely combines
procedural modeling and sketch-based interfaces.
We focused on creating a system that gives the user
maximum control over the process of modeling
trees without requiring him to learn concepts like
loops, grammars and mathematical formulae. This
reduces the flexibility of 1-2-tree, but greatly
enhances the ease of use. Simple tree models
can usually be created within a few minutes, and
arbitrary precision can be obtained by modeling
individual branches.

We have demonstrated the benefits of storing
branches as semantic entities in a hierarchical data
structure for modeling trees. Among these bene-
fits are the powerful selection options for changing
either single entities or masses of branches. More-
over, we have shown that this data structure can be
used to propagate viewport changes back to the pa-
rameters.

7.1 Future Work

The system proposed here could be extended to
edit trees that were reconstructed from images and
to determine parameter distributions of real trees.
The system would take a number of images as
input, compute tree skeletons, conclude parameter
distributions and finally use these parameters to
create other trees of the same species. The same
algorithm should compute branch textures from the
input images.

1-2-tree could be improved by more options and
better algorithms for automatic radius calculation,
branch and leaf placement.
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A Parameters

We use a simplified notation to mimic the effects of
positional information. The notation a-b increases
or decreases the value along the parent branch from
a to b. In order to introduce random variations, a
parameter can be stated as cud, meaning a uniform
distribution with an expected value of c and a
maximum deviation of d. Both notations can be
mixed: aub-cud. This notation allows to interpolate
between randomly distributed values, therefore we
call it an interpolated distribution for short.

Parameters are stored individually for each
branch, and are sorted into categories. Cate-
gory “Branch Parameters” defines basic branch
properties, such as the branch’s length and its
number of control points. Further parameters
include “Gnarl”: maximum random deviation
from a straight branch, “Gravitropism”: a grav-
itational effect bending a branch down or up,
“Subdivision Steps”: number of subdivision steps
used to produce smooth branches, “Complexity”:
number of polygons to create for each generalized
cylinder, “CPS”: allows assigning the currently
selected branches to a different child parameter
set. This is useful to protect branches from changes.



The category “Radius Parameters” contains
parameters for editing the branch radius and but-
tons for calculating radii automatically. There are
parameters for the radius at the start (“Radius”) and
at its end (“Min. Radius”). The button “Calculate
Radius” calculates radii from “Min. Radius” using
da Vinci’s law for branch radii [8].

The category “Child branches” governs child
branches. Its parameters are the “Number of
Branches”, “Anchor values”. It is possible to
configure these parameters for several separate
child parameter sets (CPS).

The category “Angles” pools parameters that
model a branch’s angle against sibling and parent
branch. The category “Leaf” parameters contains
similar parameters for leaves to the parameters
explained before.

Category “Bark” allows creating a simple noise
texture to use as bark. Small green branches can
be used to produce the needles for a conifer. In
that case, “Control Point Count”, “Complexity”
and “Subdivision Steps” should be set to minimum
values to reduce the number of polygons created.
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