
Realtime Shading of Folded
Surfaces

B.Ganster R. Klein M. Sattler R. Sarlette

{ganster, rk, sattler, sarlette }@cs.uni-bonn.de

University of Bonn
Institute of Computer Science II

Computer Graphics
Römerstrasse 164

53117 Bonn, Germany

Abstract

In this paper we present a new, simple, and efficient way to illuminate folded surfaces
with extended light sources in realtime including shadows. In a preprocessing step we
compute the parts of the surrounding environment that are visible from a set of points
on the surface and represent this information in a binary visibility map.
The illumination of the scene, i.e., incoming light from different directions, is encoded
in an environment map. This way, extended light sources and complex illumination
conditions of the surface can be simulated. The binary visibility information stored
in the visibility maps is used during runtime to calculate the incoming and outgoing
radiance in the direction of the viewer for each sample point. Various reflection mod-
els like the Phong or Lafortune model can be incorporated into these calculations.
After computing the radiance values in each sample point, the surface is shaded using
simple Gouraud interpolation.
Using the pre-computed visibility information, the whole shading and even the change
of lighting conditions can be simulated in realtime by modifying the environment map.
As an extension to the environment map we support additional point light sources
whose parameters and positions can also be manipulated in realtime. Several exam-
ples of mesh illumination and shading are demonstrated.

keywords: folded surfaces, cloth shading, shadowing, illumination

1 Introduction & previous work

In this work we aim at real time shading of surfaces such as cloth, which possibly
contain holes and complex folds, under realistic illumination conditions. The surface



is given as a triangle mesh. The appearance of a surface point is given by the ra-
diance leaving the point in the direction of the viewer. According to the rendering
equation [8, 12], this radiance is obtained by integrating the incoming radiance over
all incoming directions at the vertexv. These directions are typically represented by a
hemisphere,H(v), centered aroundv’s surface normal.
The problem of shading folded surfaces, especially cloth, was addressed by Stew-
art [1]. The main idea of his algorithm is a preprocessing step, which computes 3D
visibility conesfor each vertex point, which are used to determine the parts of the
environment ”seen” by this point. The cones are stored for each vertex and used to
evaluate the direct primary irradiance at runtime by doing several intersection tests.
The local illumination model described in [9] is used to calculate the resulting irradi-
ance value.
Stewart reduces the calculation of the 3D visibility cones to a number of 2D visibility
computations by slicing a polygonal mesh with parallel planes. If the illumination
comes from a point light source, it is sufficient to test whether the point lies in the
visibility cone. If a uniform diffuse area light source illuminates the surface, the area
light source is intersected with the visibility cone and a contour integral around the
boundary of the part of the source inside the cone yields the direct primary irradiance
[4]. If the surface is illuminated by a uniform diffuse spherical source that surrounds
the surface, a contour integral can be applied to the boundary of the visibility cone in
the same manner as that of the area source. Although the results presented by Stew-
art are convincing, the necessary computation of intersection areas and the evaluation
of the integrals prevent the use of complex shaped light sources and changing light-
ing conditions in real time. To overcome these problems we propose to usebinary
visibility mapsinstead of the Stewart’s visibility cones. These binary visibility maps
are computed in a preprocessing step as follows: we proceed by considering a finite
set of directions on the hemisphereH(v) belonging to a vertexv. For each such di-
rection we determine whether the environment is visible or occluded by the surface,
and accordingly set the binary value at the corresponding position in the visibility
map. Following the work of Stewart [1] we neglect the incoming light from direc-
tions occluded by the surface itself. Only light from directions in which the outside
environment is visible contributes to the radiance of a surface point. To discretize
the directions we evaluated three different models: a hemicube, a single plane and a
subdivision of the hemisphere into rectangles using spherical coordinates. This way,
we can accurately handle all extended light sources whose projection onto the hemi-
sphere, the hemicube or the single plane can be approximated with sufficient accuracy
by the visibility map. To illuminate the surface we encode realistic lighting conditions
in a global environment map. During the rendering process, the radiance values stored
in this environment map are used to calculate the outgoing radiance in direction of the
viewer for each vertex of the mesh. For the computation various reflectance models
of the surface can be applied. The next section contains an overview over the algo-
rithm. Section 3 deals with the preprocessing phase, explains the visibility tests and
the methods and models that were used. The rendering part is explained in section
4. In section 5 benchmarks of the preprocessing step and the rendering are presented.



Example images can be found in the appendix.

2 Algorithm outline

This section gives a brief outline of our algorithm:

• Preprocessing

– For each vertexv of the mesh we compute the visibility map by rendering
the scene usingv as eye point and the normaln of the mesh inv as viewing
direction. Pixels of the visibility map not covered by the mesh encode their
corresponding direction in the hemisphere.

– The visibility maps are computed and stored for each vertex.

• At runtime

– The radiance with respect to the observers’ position is calculated for each
vertex using a standard reflection model. The vertex visibility map is used
to determine whether the radiance from a certain direction contributes to
its radiance value.

– The positions of point light sources are transformed into the coordinate
system of the visibility map. It is subsequently decided whether the point
light source contributes to the illumination of the vertex or not. This can
easily be performed using the visibility map.

– Finally, we assign the calculated radiance values to their vertices and per-
form a Gouraud interpolation.

3 Preprocessing

During the preprocessing phase we generate the visibility maps for each vertex of the
mesh.

3.1 Computation of visibility maps

We compare three different ways to encode a visibility map: the hemicube [2], a sin-
gle plane [3] and the hemisphere discretized into a rectangular grid. To obtain the
visibility map in a vertexv the mesh is projected by a central projection with center
v to one of these models (see figure 2). The hemicube, the hemisphere and the single
plane are centered aroundv’s surface normaln. The single plane is oriented perpen-
dicularly ton. If the environment cannot be seen in a certain direction, the visibility
of this direction in the visibility map is set to the RGB value(0, 0, 0), otherwise the
direction itself is encoded in an RGB value. As we restrict ourselves to a cube model
of the environment map, the RGB value(x, y, n) is given by thex andy coordinate



Figure No 1: Visibility test . The top image shows the mesh with a vertex (blue dot)
inside a fold. The vertex is marked by its red normal. The bottom image shows the
visibility map of this vertex. The model used for the visibility map is a hemicube with
a resolution of64×64 pixels for the top side of the cube and64×32 for the sides. The
figure shows the unfolded hemicube. For simplicity in this picture the directions in
which the environment can be seen are coded by black and not by the direction itself.
The directions where the environment cannot be seen are drawn in green. The red dot
shows a projected point light source. In this example the light source can be seen by
the specified vertex. Therefore the vertex is lit.



in the picture of then-th side of the cube of the environment map. The numbering of
the sides is as follows: The top face is numbered 0, the bottom face 5, the front face
1, the right face 2, the back face 3 and the left face 4.
Figure 1 shows a sample mesh and the corresponding visibility map for one vertex.
A hemicube model is used with a resolution of64 × 64 for the top and64 × 32 for
the sides. The top image shows the mesh with a vertex (blue dot) inside a fold. The
vertex is marked by its red normal. The bottom image shows the unfolded hemicube
for the above mentioned vertex. For simplicity in this picture the directions in which
the environment can be seen are coded by black and not by the direction itself. The
directions where the environment cannot be seen are drawn in green. The red dot
shows a projected point light source. In this example the light source can be seen by
the specified vertex. Therefore the vertex is lit.
The resolution of the visibility maps isn ×m. We experimented with valuesn, m ∈
[4, 256]. The resolution can be defined by the user. For good results we recommend
n×m ≥ 64, as the possible resolution of the outgoing radiance in a vertex is limited
by this number in case of diffuse lighting of the environment. For a resolution less
than 64 this results in blotchy images. The central projection for all three models can
be computed using standard ray tracing. For the hemicube and the single plane stan-
dard OpenGL rendering can be applied. However, using standard OpenGL rendering
to project the mesh onto the sphere is complicated and involves specific hard to im-
plement clipping steps. Details on this can be found in [10].
For a static mesh the visibility map is fixed and is stored together with the coordinates

and the material parameters (reflectance parameters) of a point.

3.2 Comparison of Methods

Let v be the vertex of the mesh we determine the visibility map for. We evaluated the
following methods for generating the visibility maps.

1. OpenGL-Rendering: We rendered the mesh using a triangle stripped display list
of all triangles in the mesh.

2. OpenGL-Rendering with triangle pre-selection: In a first step, all triangles of
the mesh are sorted into a three-dimensional grid. Then, triangle strips are gen-
erated for all triangles contained in a certain cell using a straightforward strip-
ping algorithm. Finally, the triangle strips are stored in display lists. During
the rendering of the mesh, we call the display lists of only those voxels that are
within a given distance from the vertexv. This distance is given in units of the
maximum dimension of the mesh. See table 1.

3. Raytracer: For every discretized direction of the visibility map we test all tri-
angles of the mesh for an intersection with the ray leaving the point in that
direction.



Method Model Resolution Running time Distance
(sec) (ums)

Triangle Rasterizer HC 8x8 28.4 2.0
HC 16x16 30.0
SP 8x8 4.3
SP 16x16 5.0
HS 16x4 51.5
HS 32x8 54.7

Triangle Rasterizer HC 8x8 15.2 1/6
with triangle HC 16x16 17.0
preselection SP 8x8 3.1

SP 16x16 3.7
HS 16x4 15.0
HS 32x8 20.6

Raytracer with HC 8x8 120.0 1/6
triangle preselection HC 16x16 457.9

SP 8x8 32.2
SP 16x16 104.3
HS 16x4 33.3
HS 32x8 110.6

Raytracer with grid HC 8x8 27.1 2.0
traversal HC 16x16 103.8

SP 8x8 9.3
SP 16x16 46.1
HS 16x4 7.2
HS 32x8 26.8

Table No 1: Overview of the running times of the visibility calculation routines. Ab-
breviations used: HC= hemicube, SP= single plane, HS= hemisphere. UMS=units of
mesh size.



Environment Map

HemicubeHemicubeSurface

N

Pi

V

q

Ti

Li

I

Figure No 2: The mapping between thebinary visibility map of vertexv and the
global environment mapTi is encoded in each pixelPi of the visibility map itself.
The environment patchTi emitsLi in the directionI. θ is the angle between the
surface normalN in v and the directionI of the incoming radiance. For simplicity,
only a side view is shown.

4. Raytracer with triangle preselection: Similarly to OpenGL rendering with tri-
angle pre-selection, we sort all triangles of the mesh into a three-dimensional
grid and test only triangles in gris cells close tov.

5. Raytracer with grid traversal: We test only triangles lying in grid cells passed
by the ray.

Table 1 summarizes the run times for all combinations of methods and models.
The computations were performed on an Intel Celeron 800 MHz machine with a
NVIDIA TNT2 graphics card. To evaluate the core speed of the visibility calculation
routines, we do not include the rendering of the environment map into the measure-
ments, i.e. we do not encode the directions. The table demonstrates quite clearly that
OpenGL rendering with triangle preselection in singleplane mode and raytracer with
grid traversal in hemisphere mode are the fastest techniques for the preprocessing step.

The singleplane model is efficient, however it has the disadvantage that the aper-
ture angle must be less than 180 degrees, so only part of the half space is evaluated.



Therefore, the model may miss some small folds.
Using the Hemicube model is relatively slow compared to the singleplane model,

because five pictures must be rendered for each point (the other models only need to
render one image). On the other hand, it is more accurate than the single plane model
and in contrast to the hemisphere it can be hardware-accelerated.

The table also shows that the OpenGL runtime only slightly depends on the reso-
lution of the images that are generated. The situation is radically different in case of
the raytracer, the double resolution needs twice as many rays.

4 Realtime Rendering

During the realtime rendering the outgoing radiances have to be computed for every
vertex of the mesh.

4.1 Illuminating the surface using an environment map

As already mentioned, we restrict ourselves to cube maps. For the results the 24bit
RGB pictures are generated by hand (see Appendix). For real applications they can be
generated using high dynamic range images from the real world environments. The
resolution of the environment map is adapted to the resolution of the visibility map in
such a way that one texel in the environment map corresponds to approximately one
pixel of our visibility map.

4.1.1 Calculating the outgoing radiance

The outgoing radiance in vertexv at the surface locationx in direction of the viewer
has to be computed. According to the rendering equation [3] the amount of incident
light reflected towards the viewer has to be gathered. For this purpose, the incident
radiance of each pixel is weighted by the∆-form factor of the pixel itself and then
used as incoming radiance of a reflection model. The∆-form factors are derived from
the rendering equation as following [12]:

Lo(x, ~ω) = Le(x, ~ω) +
∫

S

fr(x, x′ → x, ~ω)Li(x, x′ → x)V (x, x′)G(x, x′)dA′ (1)

with:
Lo: outgoing radiance [Wm−2sr−1]
Le: emitted radiance [Wm−2sr−1]
fr: BRDF [sr−1]
Li: incident radiance [Wm−2sr−1]
~ω′: incidence direction
~n: normal at the surface locationx
x′: another surface location
~n′: normal atx′



dA′: differential area atx′

(x′ → x): radiance leavingx′ in the direction towardsx
S: set of all surface points

V (x, x′) =
{

1 : x andx′ are mutually visible
0 : otherwise

(2)

G(x, x′) =
(~ω′ · ~n′)(~ω′ · ~n)
‖x′ − x‖2

(3)

For the evaluation of the hemicubes we assume, that every surface in the model is
Lambertian, so that the reflected radiance is constant in all directions. This reduces
equation(8) to:

B(x) = Be(x) +
∫

S

fr,d(x)B(x′)V (x, x′)G(x, x′) dA′

= Be(x) +
ρd(x)

π

∫
S

B(x′)V (x, x′)G(x, x′) dA′
(4)

B: radiosity (outgoing) [Wm−2]
ρd: diffuse reflectance for a Lambertian surface (ρd = πfr,d(x))

Discretizing:

Bi = Be,i + ρi

N∑
j=1

BjFij (5)

The form factorFij from differential areadAi to differential areadAj is

Fij =
1
Ai

∫
Ai

∫
Aj

V (x, x′)G(x, x′)
π

dAj dAi (6)

Delta form factors for the hemicube pixels: (A hemicube pixel covers the area
∆A, the visibility information ist encoded into the pixels):

∆FF =
G(x, x′)

π
∆A (7)

For the hemicube model the∆-form factors for top and side faces are computed
analog to [11].
The contribution of one pixel in the visibility map ofx is computed using the radiance
stored in the corresponding texel of the environment map. This radiance is weighted
by the∆-form factor of the pixel and then used as input of a local illumination model,
which is Lambertian reflection in our algorithm. Note that for real-world environment
maps no∆-form factor has to be applied to the outgoing radiance stored in the envi-
ronment map, since it is already encoded in the corresponding real-world picture. Due



to the superposition property of light the total amount of radiance leaving the vertex in
direction of the viewer is then easily obtained by summing the contributions of outgo-
ing radiance of all pixels of the visibility map not marked as occluded. Note that the
incident radiance corresponding to a pixel is taken from the environment map using
the texel of the environment map encoded in the visibility map, see Figure 2. Note,
that the∆-form factors have to be computed only once and can be reused for every
vertex. After calculating the radiance values for all vertices, the mesh can be rendered
using a standard OpenGL-Renderer with Gouraud interpolation.
For the point light source any desired illumination model can be incorporated into the
algorithm.

4.1.2 Dynamic environment maps

Due to the above calculations, our algorithm allows the dynamic modification of the
illumination condition in realtime by using different cube maps. For example, if we
want to rotate the surface in the environment, a rotated cube map is generated.

5 Results

Figure 3 and 5 show the static mesh of a cloth illuminated by virtual light encoded in
hand made cubic environment maps (figures 4,6). The environment maps faces repre-
sent uniformly emitting light sources. In all pictures, the relative position of the model
with respect to the environment map is fixed. In order to visualize the effect of the dif-
ferent lighting conditions, the whole scene including the environment map is rotated.
We take snapshots from several viewing positions. Note how the radiance especially
in the foldings descents from the illuminated to the dark side. Folds pointing towards
the light source are fully illuminated. The situation is even more apparent if we use the
faces of the environment map as colored light sources, see figure 6. Figure 8 shows a
textured mesh of parts of the Grand Canyon based on satellite altitude data with 66049
vertices. In the left image pre-computed shadows calculated with a hemicube model
are used. In the right image no illumination is used. The visual impression of the left
images reveals a greater depth impression due to the self-shadowing in the faults.
Due to the vertex based shading it is necessary that the resolution of the triangle mesh
provides sufficiently high fidelity. An additional point light source is used in figure 8
with the Utah teapot mesh. The spout casts a shadow on the pot (left image).
The images in figure 9 show a spaceship consisting of 18720 vertices. Self-shadowing
is visible in the propulsion units, at the cockpit and under the wings.



6 Conclusions and Future Work

The algorithm presented is able of illuminating folded surfaces with extended light
sources in realtime. The illumination conditions can be changed at runtime.
So far our meshes cannot be deformed in realtime. This would require a complete new
set of visibility maps at every frame. At the moment, our preprocessing step needs at
least about 3 seconds of runtime, using the hemiplane model, which is not enough to
achieve interactive frame rates. A possible optimization could be to update only the
parts of the mesh which have changed. Furthermore, it might be possible to further
exploit graphics hardware acceleration for the preprocessing step. Future versions of
our method should use high dynamic range images for the environment maps, which,
at this state, consist only of RGB images. This will increase the realism of effects
simulated by the environment illumination. Moreover, a local illumination model
described by Stewart and Langer [9] can be applied to estimate secondary irradiance.
The use of this model yields perceptually acceptable shading without resorting to an
expensive global illumination step.

7 Acknowledgements

We would like to thank Markus Wacker from the University of Tuebingen for the
mesh we used in our examples and our colleague Marcin Novotni for useful hints and
corrections. Some of the used models were provided by www.3DCAFE.com.

References

[1] A. James Stewart.Computing Visibility from Folded Surfaces, Elsevier
Preprint, 1999.

[2] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.Fundamen-
tals of Interactive Computer Graphics, Addison Wesley, second edi-
tion. 1990.

[3] Micheal F. Cohen, John R. Wallace.Radiosity and Realistic Image
Syynthesis, Morgan Kaufmann Publishers, Inc. 1993.

[4] Peter Shirley.Realistic Ray Tracing, A K Peters. 2000.

[5] T. Whitted.An Improved Illumination Model for Shaded Display, Com-
munications of the ACM, vol.23, no. 6. 1980.

[6] F. C. Crow.Shadow Algortihms for Computer Graphics, SIGGRAPH
77. 1977.

[7] L. Williams. Casting Curve Shadows on Curved Surfaces, SIGGRAPH
78. 1978.



[8] J. T. Kajiya.The rendering equation, Computer Graphics, vol. 20, no.4.
1986.

[9] A. James Stewart. and M. S. LangerTowards accurate recovery of
shape from shading under diffuse lighting, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 19, no.9, 1997.

[10] B. GansterEfficient cloth shading, Diploma Thesis, University of
Bonn, 2002.

[11] Michael F. Cohen and Donald P. GreenbergThe Hemi-Cube: A radios-
ity solution for complex environments, SIGGRAPH 85 Proc., vol. 19,
no.3, 1985.

[12] H.W. JensenRealistic Image Synthesis Using Photon Mapping, A K
Peters, 2001.



8 Appendix

Figure No 3: These three images show a folded dress consisting of 3120 vertices. The
left image shows a frontal view of the dress. Due to the pre-computed shadowing the
folds in the lower part of the dress are clearly visible. In the center image, the back of
the dress is shown, slightly rotated against the front side of the environment cube. The
right image is rendered using another point of view, showing the folds in more detail.

Figure No 4: Environment cube map used for the rendering of the above images, with
only the front side white.



Figure No 5: These images show the effects of the usage of the environment faces as
colored light sources. The mesh used, is the same as in figure 3. The corresponding
environment maps are shown in figure 6. The reflection of the different light sources
can be distinguished from each other in the folds.

Figure No 6: Environment cube maps used for the rendering of the above images. For
the two left images top and bottom are black. Sides are red, green, blue and yellow.
For the two right images left and right are blue and red, the top is white and the rest is
colored black.



Figure No 7: These images show a textured mesh of parts of the Grand Canyon based
on satellite altitude data with 66049 vertices. In the left image pre-computed shadows
calculated with a hemicube model are used. In the right image no illumination is used.
The visual impression of the left images reveals a greater depth impression due to the
self-shadowing in the faults.

Figure No 8: The Utah teapot. The mesh consist out of 3907 vertices and is illu-
minated with a point light source (yellow dot) in front of the teapot (left image). The
light source visibility is calculated on a per vertex basis, as described in the paper. The
right image shows the teapot with the light source moved above it. Self shadowing is
also visible in both images.



Figure No 9: These images show a spaceship model with 18720 vertices, provided
by www.3DCAFE.com. A hemicube model with a resolution of64 × 64 pixels for
the top of the cube and no additional point light sources were used. Self-shadowing is
visible in the propulsion units, at the cockpit and under the wings.


